Nom : _____

PHYS 11

		- 41.7
TEST 3	Mouvement rectiligne uniformément accéléré (MRUA)	Le

acceleration	velocity	position = distance travelled
$a = \frac{v_2 - v_1}{t}$	$v = at + v_0$	$x = \frac{1}{2}at^2 + v_0t + x_0$

Exercise 1

A mobile moves on a straight line at an initial velocity of 4 m/s and has a constant acceleration of 5 m/s² oriented in the same direction as the velocity. Calculate:

a) The velocity of the mobile after 6 seconds.	b) The distance travelled after 6 seconds.

If the acceleration of the mobile is now in the opposite direction to that of the initial velocity, calculate:

c) The velocity of the mobile after 6 seconds.	d) The distance travelled after 6 seconds.

Exercise 2

A car traveling at 72 km/h constantly brakes until it stops after 5 seconds.

á) What is the distance travelled during the braking?
ŀ) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
ł) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k	•) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?
k) What is its velocity 3 seconds after the start of braking?

Exercise 3

A car is traveling at 108 km/h when the light turns red at a crossroads. If the driver's reaction time is 1 s and the deceleration of the car is 8 m/s² as soon as the driver brakes, calculate the distance travelled by the car from the moment the driver sees the red light until the moment the car stops.